THE NATIONAL FUSION COLLABORATORY PROJECT

David P. Schissel

DIII-D National Fusion Facility

General Atomics

San Diego, CA

At the
ITER-Grid Demonstrations
Arlington, VA
December 20, 2003

COLLABORATORY'S GOAL IS TO ADVANCE SCIENTIFIC UNDERSTANDING & INNOVATION IN FUSION RESEARCH

NATIONAL FUSION COLLABORATORY PROJECT SEEKS TO UNIFY SCIENTISTS ACROSS THE UNITED STATES

Realistic non-linear 3D models

1500 U.S. scientists

90 sites, 37 states

Experimental Facilities

\$1B capital investment

COLLABORATORY'S GOAL IS TO ADVANCE SCIENTIFIC UNDERSTANDING & INNOVATION IN FUSION RESEARCH

- Enable more efficient use of existing experimental facilities through more powerful between pulse data analysis resulting in a greater number of experiments at less cost
- Allowing more transparent access to analysis and simulation codes, data, and visualization tools, resulting in more researchers having having access to more resources
- Enable more effective integration of experiment, theory, & modeling
- Facilitate multi-institution collaborations

NFC IS CREATING & DEPLOYING COLLABORATIVE SOFTWARE TOOLS FOR THE FUSION COMMUNITY

- Data, Codes, Analysis Routines, Visualization Tools should be thought of as network accessible services
 - Access is stressed rather than portability
- Shared security infrastructure: authentication & authorization
- Collaborative nature of research requires shared visualization applications and widely deployed collaboration technologies
 - Integrate geographically diverse groups
- Not focused on CPU cycle scavenging or "distributed" supercomputing (typical Grid justifications)
 - Optimize the most expensive resource people's time

SUCCESSFUL GRID COMPUTING FOR FUSION SCIENCE

TRANSP – Tools for time dependent analysis & simulation of tokamak plasmas

GRID COMPUTING FOR NUMEROUS TOKAMAKS

Total Runs in FY 2003: 1662

SNAPSHOT OF GRID COMPUTING FROM WEDNESDAY

FusionGrid transitioning to international usage

COLLABORATIVE NATURE OF FES NECESSITATES A SHARED VISUALIZATION ENVIRONMENT

- Strive to dramatically reduce the hurdles that presently exist for collaborative scientific visualization
- Collaborative or Virtual Control Room
 - Large on–site group interactively work with small to large off–site group
 - Just as rich an experience for off-site personnel
- Collaborative working or data analysis meetings
 - Simultaneous sharing of complex visualization
 - Critical for complex simulations

TILED DISPLAY ALLOWS A LARGE GROUP TO EXPLORE INFORMATION IN COLLABORATION MORE EFFECTIVELY

TILED DISPLAY WALL FOR FUSION CONTROL ROOM

PROTOTYPED THIS YEAR, PERMANENT INSTALL EARLY NEXT YEAR

ACCESS GRID: REAL TIME COMPLEX COMMUNICATION

Access Grid

- Audio & Video services
- Shared applications
- Small to very large meetings
- Grid enabled: secure

EXPERIMENTAL SCIENCES PLACES A PREMIUM ON REAL—TIME ANALYSIS OF LARGE DATA

- Pulsed Experiments: 10 s duration plasma every 20 min
- 20 to 40 people in control room plus remote collaborators
- 10,000 separate measurements per plasma
- Long term goal: what we do overnight we do between plasmas

DIII-D Control Room

CHARACTERISTICS OF A REMOTE CONTROL ROOM

- As rich and as engaging experience if one is on—site
- Timely access to all data
 - No data analysis penalty for being off-site
- Involved in the decision making
 - Audio, video, and shared applications for discussion
- Advanced reservation of computing resources
 - Grid computing to support tokamak operations

COLLABORATIVE CONTROL ROOM DEMONSTRATION: INTEGRATE OFF-SITE SCIENTIST INTO THE EXPERIMENT

REMOTE CONTROL ROOM DEMONSTRATION AT SUPERCOMPUTING MEETING NOVEMBER 2003

SuperComputing 2003, Phoenix AZ

ADVANCE RESERVATION OF GRID SERVICE

- Time bounded execution of remote analysis
 - Depends on multiple components (e.g. network, data, CPU)
- More efficient resource usage
- For our demonstration, calculate plasma shape
 - EFIT run on PPPL Linux cluster
 - Request so many time slices in a certain length of time

Subsidiary services:

AUDIO AND VIDEO FROM THE CONTROL ROOM

- Moveable camera
 - "Look around" control room
- Multiple audio/video feeds
- For our demonstration, Access Grid
 - Many to one in control room

PULSE CYCLE AND DATA ACQUISITION DISPLAY

Remote Collaboration Requires a Sense of Presence in the Control Room

ANALYSIS MONITORING AND ELECTRONIC LOGBOOK

REAL TIME DATA DISPLAY OF KEY PLASMA PARAMETERS

APPLICATION SHARING AND CONCURRENT CONTROL WITHIN THE CONTROL ROOM

- Demonstrated to the AG node
- Replaces paper or "bending over" terminal

APPLICATION SHARING ALLOWS DETAILED DISCUSSION OF PHYSICS IN REAL TIME

- For our demo, ReviewPlus
 - Data from San Diego
- Fully interactive
- Any application

EXPERIMENTAL AND THEORETICAL COMPARISONS ARE CRITICAL TO UNDERSTANDING

FES SIMULATIONS ARE VERY COMPLEX

Experimental design simulation

- 10 decade range in time and space
- Extreme anisotrophy
- Interaction of fine and large scale physics

Plasma stability simulation

COMPLEX SIMULATIONS REQUIRE ADVANCED VISUALIZATION FOR BETTER UNDERSTANDING

- Raises challenge of very large datasets
- Sharing critical
- Integrated into tokamak operations

ITER: SUCCESSFUL OPERATION REQUIRES EFFECTIVE REMOTE COLLABORATION

- Productive engaging work environment for off—site personnel
- Large simulations, shared visualization, decisions back to control room
- Policy is critical
 - Fast access to all data
 - Timely prototyping of technology can assure ITER needs are met
 - ITER requires robust, proven systems

